Multiobjective Combinatorial Optimization by Using Decomposition and Ant Colony

نویسنده

  • Liangjun Ke
چکیده

Combining ant colony optimization (ACO) and multiobjective evolutionary algorithm based on decomposition (MOEA/D), this paper proposes a multiobjective evolutionary algorithm, MOEA/D-ACO. Following other MOEA/D-like algorithms, MOEA/D-ACO decomposes a multiobjective optimization problem into a number of single objective optimization problems. Each ant (i.e. agent) is responsible for solving one subproblem. All the ants are divided into a few groups and each ant has several neighboring ants. An ant group maintains a pheromone matrix and an individual ant has a heuristic information matrix. During the search, each ant also records the best solution found so far for its subproblem. To construct a new solution, an ant combines information from its group’s pheromone matrix, its own heuristic information matrix and its current solution. An ant checks the new solutions constructed by itself and its neighbors, and updates its current solution if it has found a better one in terms of its own objective. Extensive experiments have been conducted in this paper to study and compare MOEA/D-ACO with other algorithms on two set of test problems. On the multiobjective 0-1 knapsack problem, MOEA/D-ACO outperforms MOEA/D-GA on all the nine test instances. We also demonstrate that the heuristic information matrices in MOEA/D-ACO are crucial to the good performance of MOEA/D-ACO for the knapsack problem. On the biobjective traveling salesman problem, MOEA/D-ACO performs much better than BicriterionAnt on all the 12 test instances. We also evaluate the effects of grouping, neighborhood and the location information of current solutions on the performance of MOEA/D-ACO. The work in this paper shows that reactive search optimization scheme, i.e., the “learning while optimizing” principle, is effective in improving multiobjective optimization algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MEDACO: Solving Multiobjective Combinatorial Optimization with Evolution, Decomposition and Ant Colonies

We propose a novel multiobjective evolutionary algorithm, MEDACO, a shorter acronym for MOEA/D-ACO, combining ant colony optimization (ACO) and multiobjective evolutionary algorithm based on decomposition (MOEA/D). The motivation is to use the online-learning capabilities of ACO, according to the Reactive Search Optimization (RSO) paradigm of ”learning while optimizing”, to further improve the ...

متن کامل

Winner Determination in Combinatorial Auctions using Hybrid Ant Colony Optimization and Multi-Neighborhood Local Search

A combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The WDP in combinatorial auctions is the problem of finding winning bids that maximize the auctioneer’s revenue under the constraint that each item can be allocated to at most one bidder. The WDP is known as an NP-hard problem with practical applications like electronic commerce, production manag...

متن کامل

Two Metaheuristics for Multiobjective Stochastic Combinatorial Optimization

Two general-purpose metaheuristic algorithms for solving multiobjective stochastic combinatorial optimization problems are introduced: SP-ACO (based on the Ant Colony Optimization paradigm) which combines the previously developed algorithms S-ACO and P-ACO, and SPSA, which extends Pareto Simulated Annealing to the stochastic case. Both approaches are tested on random instances of a TSP with tim...

متن کامل

Using ACO in MOEA/D for Multiobjective Combinatorial Optimization

Combining ant colony optimization (ACO) and multiobjective evolutionary algorithm based on decomposition (MOEA/D), this paper proposes a multiobjective evolutionary algorithm, MOEA/D-ACO. Following other MOEA/D-like algorithms, MOEA/D-ACO decomposes an multiobjective optimization problem into a number of single objective optimization problems. Each ant (i.e. agent) is responsible for solving on...

متن کامل

Ant Colony Optimization in Multiobjective Portfolio Selection

Multiobjective decision-making and combinatorial optimization have been studied extensively over the past few decades (cf. [16], and [4] for bibliographies). Both fields play a decisive role in multiobjective combinatorial optimization, for which the class of (multiobjective) portfolio selection is of particularly high practical relevance (cf. [10] for a survey). Research and development (R&D) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012